首页
新闻动态
通知公告
通知公告  
特邀英国斯特拉思克莱德大学毛学荣等3位教授来我校作学术报告
报告时间:4月1日(星期五)上午9:00—11:30

报告地点:学科三号楼S410会议室

主持人:刘青山教授

报告人(一):毛学荣 教授

报告题目:Stabilization of Hybrid Systems by Feedback Control based on Discrete-time State Observations

报告人(二):胡良剑 教授

报告题目:Robust Stability and Boundedness of Nonlinear Hybrid Stochastic Differential Delay Equations

报告人(三):刘暐 教授

报告题目:Stabilisation of hybrid stochastic differential equations based on discrete-time state observation with a time delay

欢迎广大师生踊跃参加!

              江苏省大数据分析技术重点实验室

江苏省气象能源利用与控制工程技术研究中心

                江苏省大气环境与装备技术协同创新中心

                   信息与控制学院

    2016年3月28日

 

报告人简介:毛学荣,男,1957年3月出生于福建省福州市。现代随机稳定性领域的奠基人,国际知名的随机稳定性和随机控制领域专家,在本学科领域享有很高的声誉。英国斯特拉思克莱德大学, 教授,数学与统计系主任。毛学荣提出的随机Razumikhin方法和随机LaSalle原理,为现代随机时滞系统的稳定性分析奠定了数学理论基础,开创了具有马尔科夫调制的随机系统的稳定性与控制理论研究,建立了随机指数稳定性的理论体系,并在此基础上开创了随机镇定和反镇定这一新的控制理论研究领域,开创了非线性随机微分方程数值稳定性分析理论。

报告摘要: Recently, Mao [Automatica J. IFAC, 49 (2013), pp. 3677–3681] initiated the study the mean-square exponential stabilization of continuous-time hybrid stochastic differential equations by feedback controls based on discrete-time state observations. In the same paper Mao also obtains an upper bound on the duration τ between two consecutive state observations. However, it is due to the general technique used there that the bound on τ is not very sharp. In this paper, we will be able to establish a better bound on τ making use of Lyapunov functionals. We will discuss the stabilization not only in the sense of exponential stability (as Mao does in [Automatica J. IFAC, 49 (2013), pp. 3677–3681]) but also in other sense—that of H∞ stability or asymptotic stability. We will consider not only the mean square stability but also the almost sure stability.

报告人简介: 胡良剑,东华大学教授,博士生导师。1981年获安徽师范大学数学系学士学位,1988年获中国纺织大学应用数学专业硕士学位, 2004年获东华大学控制理论与控制工程专业博士学位。曾在台湾清华大学电机工程系,英国Strathclyde大学统计与建模科学系做访问学者。现任东华大学理学院副院长,兼任全国数学建模竞赛上海市组织委员会委员,中国工程概率统计学会理事,中国运筹学会不确定系统分会理事等职。主要研究方向为随机微分方程,随机系统的稳定性与控制等。曾主持国家自然科学基金面上项目2项,发表SCI收录论文30多篇,主编《Matlab数学实验》等教材。

报告摘要: One of the important issues in the study of hybrid stochastic differential delay equations (SDDEs) is the automatic control, with consequent emphasis being placed on the asymptotic analysis of stability and boundedness. In the study of asymptotic properties, the robust stability has received a great deal of attention. The theory of robust stability shows howmuch perturbation a given stable hybrid SDDE can tolerate so that its perturbed system remains stable. Almost all results so far on the robust stability require that the underlying SDDEs be either linear or nonlinear with linear growth condition. However, little is known on the robust stability of nonlinear hybrid SDDEs without the linear growth condition, which is one of the key topics in this paper. The other key topic is the robust boundedness. The aim here is to answer the question: how much perturbation can a given asymptotically bounded hybrid SDDE tolerate so that its perturbed system remains asymptotically bounded?

报告人简介:  刘暐,本科大一大二就读于东华大学数学系,大三大四读于英国斯特拉斯克莱德大学。2010-2013在英国斯特拉斯克莱德大学完成博士学位,2013-2014在英国拉夫堡大学从事博士后工作。2015年加入上海师范大学,2015年9月起受聘为副研究员。主要的研究兴趣包括:随机微分方程的数值计算,随机偏微分方程,随机控制。

报告摘要:In this talk, the idea that feedback control based on discrete-time state observation for stochastic differential equations with Markovian switching is introduced, which was initialised in Mao (2013). In practice, various effects could cause some time delay in the control function. Therefore, the time delay is taken into account for the discrete-time state observation, then the mean-square exponential stability of the controlled system is investigated.

江苏省气象能源利用与控制工程技术研究中心 NUIST备80151 版权所有 Copyright © 2015 All right reserved

地址:南京市宁六路219号 邮编:210044

备案号:NUIST备80151